Những câu hỏi liên quan
Đại Ngọc
Xem chi tiết
Nguyệt Băng Vãn
Xem chi tiết
Võ Thị Quỳnh Giang
15 tháng 11 2017 lúc 16:38

ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)

\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\)    (vì abc=1)     (*)

Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\)   (vì abc=1)

=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\)   (**)

Từ (*), (**)=> đpcm

Bình luận (0)
Phan Gia Huy
12 tháng 2 2020 lúc 16:07

Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3

\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

Tương tự rồi cộng lại:

\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
31 tháng 5 2020 lúc 16:55

Ta cần chứng minh \(\Sigma\frac{a}{\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow\Sigma\left[4a\left(c+1\right)\right]\ge3\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow4\Sigma ab+4\Sigma a\ge3abc+3\Sigma ab+3\Sigma a+3\)

\(\Leftrightarrow ab+bc+ca+a+b+c\ge6\)(*)

Áp dụng bất đẳng thức Cauchy cho 3 số dương ta được:

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}=3\)\(a+b+c\ge3\sqrt[3]{abc}=3\)(Do theo giả thiết thì abc = 1)

Suy ra (*) đúng

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Phương Thảo
Xem chi tiết
zZz Cool Kid_new zZz
2 tháng 7 2020 lúc 10:54

Bạn tham khảo tại đây:

Câu hỏi của Trần Hữu Ngọc Minh - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
2 tháng 7 2020 lúc 21:20

Áp dụng BĐT Cosi ta được:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)64}}=\frac{3a}{4}̸\)

Tương tự \(\hept{\begin{cases}\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{1+a}{8}+\frac{1+c}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)

Cộng theo từng vế BĐT trên ta có:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{a+b+c}{2}\)

Vì \(a+b+c\ge3\sqrt[3]{abc}=3\)do đó:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
Trần Hữu Ngọc Minh
Xem chi tiết
vũ tiền châu
4 tháng 9 2017 lúc 18:42

xin lỗi nhé bên trên do đánh nó không hiện nên tưởng không viết được , 

Cộng từng vế của 3 bđt cùngc hiều ta có \(A+\frac{a+b+c+3}{4}>=\frac{3}{4}\left(a+b+c\right)\)

=> \(A>=\frac{a+b+c}{2}-\frac{3}{4}\)

Áp dụng bđts cô si ta có a+b+c>=\(3\sqrt[3]{abc}=3\)

=> A>=\(\frac{3}{4}\)

mình làm hơi tắt cậu chịu khó đọc nhé

Bình luận (0)
vũ tiền châu
4 tháng 9 2017 lúc 18:37

bài này Áp dụng bất đẳng thức cô si nhé

đặt \(A=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)

ta có Áp dựng bất đẳng thức cô si ta có \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}>=3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

tương tự ta có \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}>=\frac{3b}{4}\)

                       \(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1_{1+a}}{8}+\frac{1+b}{8}>=\frac{3c}{4}\)

cộng từng vế của 3 bđt cùng chiều ta có \(A>=\frac{3\left(a+b+c\right)}{4}\)

mà 

Bình luận (0)
Lương văn lò
21 tháng 5 2020 lúc 20:04

chó olm.vn

Bình luận (0)
 Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Hày Cưi
Xem chi tiết
Nguyễn Quốc Gia Huy
Xem chi tiết
Thắng Nguyễn
23 tháng 8 2017 lúc 20:20

Bài này làm hoài :v

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:

\(VT=\frac{b^2c^2}{ab+ac}+\frac{a^2c^2}{ab+bc}+\frac{a^2b^2}{ac+bc}\)

\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}=VP\)

Khi a=b=c=1

Bình luận (0)
Phan Nghĩa
2 tháng 9 2020 lúc 20:21

Đặt \(\left\{a;b;c\right\}\rightarrow\left\{\frac{1}{x};\frac{1}{y};\frac{1}{z}\right\}\)Khi đó : \(\frac{1}{x}.\frac{1}{y}.\frac{1}{z}=\frac{1}{x.y.z}=a.b.c=1< =>x.y.z=1\)

\(BĐT< =>\frac{1}{\left(\frac{1}{x}\right)^3\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\left(\frac{1}{y}\right)^3\left(\frac{1}{y}+\frac{1}{x}\right)}+\frac{1}{\left(\frac{1}{z}\right)^3\left(\frac{1}{x}+\frac{1}{y}\right)}\ge\frac{3}{2}\)

\(< =>\frac{x^3yz}{y+z}+\frac{y^3xz}{z+x}+\frac{z^3xy}{x+y}\ge\frac{3}{2}\)\(< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)(*)

Ta chỉ cần chỉ ra bất đẳng thức (*) đúng thì bài toán được giải quyết , thật vậy :

Theo bất đẳng thức Bunhiacopxki dạng phân thức :

\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\) (**)

Sử dụng bất đẳng thức AM-GM ta có : 

\(x+y+z\ge3\sqrt[3]{xyz}=3\sqrt[3]{1}=3\)Tương đương \(\frac{x+y+z}{2}\ge\frac{3}{2}\)(***)

Từ (**) và (***) ta được \(\frac{x^2}{z+y}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\ge\frac{3}{2}\)

Suy ra bất đẳng thức (*) đúng . Nên ta có điều phải chứng minh !

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Trí Tiên亗
2 tháng 9 2020 lúc 21:43

Bài này dùng Sac - xơ để ý một xíu là ra nhé !

Theo BĐT Svacxo ta có :

\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\) \(=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b.\left(c+a\right)}+\frac{\frac{1}{c^2}}{c.\left(a+b\right)}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2.\left(ab+bc+ca\right)}=\frac{\left(\frac{ab+bc+ca}{abc}\right)^2}{2.\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2.\left(ab+bc+ca\right)}\)

\(=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\) ( Do \(abc=1\) )

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy BĐT được hoàn tất !

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

Bình luận (0)
 Khách vãng lai đã xóa
DOC CO CAU BAI
Xem chi tiết